Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 362-367, 2015.
Article in English | WPRIM | ID: wpr-331059

ABSTRACT

In order to investigate the roles of Wnt signal pathway in transformation of cardiac valvular myofibroblasts to the osteoblast-like phenotype, the primary cultured porcine aortic valve myofibroblasts were incubated with oxidized low density lipoprotein (ox-LDL, 50 mg/L), and divided into four groups according to the ox-LDL treatment time: control group, ox-LDL 24-h group, ox-LDL 48-h group, and ox-LDL 72-h group. Wnt signal pathway blocker Dickkopf-1 (DDK-1, 100 μg/L) was added in ox-LDL 72-h group. The expression of a-smooth muscle actin (α-SMA), bone morphogenetic protein 2 (BMP2), alkaline phosphatase (ALP), and osteogenic transcription factor Cbfa-1 was detected by Western blotting, and that of β-catenin, a key mediator of Wnt signal pathway by immunocytochemical staining method. The Wnt/β-catenin was observed and the transformation of myofibroblasts to the osteoblast-like phenotype was examined. The expression of α-SMA, BMP2, ALP and Cbfa-1 proteins in the control group was weaker than in the ox-LDL-treated groups. In ox-LDL-treated groups, the protein expression of a-SMA, BMP2, ALP, and Cbfa-1 was significantly increased in a time-dependent manner as compared with the control group, and there was significant difference among the three ox-LDL-treated groups (P<0.05 for all); β-catenin protein was also up-regulated in the ox-LDL-treated groups in a time-dependent manner as compared with the control group (P<0.05), and its transfer from cytoplasm to nucleus and accumulation in the nucleus were increased in the same fashion (P<0.05). After addition of DKK-1, the expression of α-SMA, bone-related proteins and β-catenin protein was significantly reduced as compared with ox-LDL 72-h group (P<0.05). The Wnt/ β-catenin signaling pathway may play an important role in transformation of valvular myofibroblasts to the osteoblast-like phenotype.


Subject(s)
Animals , Actins , Metabolism , Aortic Valve , Cell Biology , Cell Differentiation , Cells, Cultured , Gene Expression Regulation , Intercellular Signaling Peptides and Proteins , Pharmacology , Lipoproteins, LDL , Pharmacology , Myofibroblasts , Osteoblasts , Physiology , Phenotype , Swine , Wnt Signaling Pathway , beta Catenin , Metabolism
2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 362-7, 2015.
Article in English | WPRIM | ID: wpr-636938

ABSTRACT

In order to investigate the roles of Wnt signal pathway in transformation of cardiac valvular myofibroblasts to the osteoblast-like phenotype, the primary cultured porcine aortic valve myofibroblasts were incubated with oxidized low density lipoprotein (ox-LDL, 50 mg/L), and divided into four groups according to the ox-LDL treatment time: control group, ox-LDL 24-h group, ox-LDL 48-h group, and ox-LDL 72-h group. Wnt signal pathway blocker Dickkopf-1 (DDK-1, 100 μg/L) was added in ox-LDL 72-h group. The expression of a-smooth muscle actin (α-SMA), bone morphogenetic protein 2 (BMP2), alkaline phosphatase (ALP), and osteogenic transcription factor Cbfa-1 was detected by Western blotting, and that of β-catenin, a key mediator of Wnt signal pathway by immunocytochemical staining method. The Wnt/β-catenin was observed and the transformation of myofibroblasts to the osteoblast-like phenotype was examined. The expression of α-SMA, BMP2, ALP and Cbfa-1 proteins in the control group was weaker than in the ox-LDL-treated groups. In ox-LDL-treated groups, the protein expression of a-SMA, BMP2, ALP, and Cbfa-1 was significantly increased in a time-dependent manner as compared with the control group, and there was significant difference among the three ox-LDL-treated groups (P<0.05 for all); β-catenin protein was also up-regulated in the ox-LDL-treated groups in a time-dependent manner as compared with the control group (P<0.05), and its transfer from cytoplasm to nucleus and accumulation in the nucleus were increased in the same fashion (P<0.05). After addition of DKK-1, the expression of α-SMA, bone-related proteins and β-catenin protein was significantly reduced as compared with ox-LDL 72-h group (P<0.05). The Wnt/ β-catenin signaling pathway may play an important role in transformation of valvular myofibroblasts to the osteoblast-like phenotype.

SELECTION OF CITATIONS
SEARCH DETAIL